The Parameter-Less SOM algorithm

نویسندگان

  • Erik Berglund
  • Joaquin Sitte
چکیده

One of the biggest problems facing practical applications of Self-Organising Maps (SOM) is their dependence on the learning rate, the size of the neighbourhood function and the decrease of these parameters as training progresses, all of which have to be selected without firm theoretical guidance. This paper introduces a simple modification to the SOM that completely eliminates the learning rate, the decrease of the learning rate and the decrease of the neighbourhood size. This is done by making the learning rate and neighbourhood size dependant on a variable calculated from the internal state of the SOM, rather than on externally applied variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Adaptive Selection of Self-Organizing Map Self-Training Endpoint

The paper presents a new method for adaptive selection of Self-Organizing Map (SOM) self-training endpoint. A method is based on the estimation of the newly introduced parameter ∆init and the learning depth parameter κ. In order to propose an optimal range of κ values, the influence of the selected learning depth parameter to the performance of SOM was tested experimentally using input data wit...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

Auto-SOM: Recursive Parameter Estimation for Guidance of Self-Organizing Feature Maps

An important technique for exploratory data analysis is to form a mapping from the high-dimensional data space to a low-dimensional representation space such that neighborhoods are preserved. A popular method for achieving this is Kohonen's self-organizing map (SOM) algorithm. However, in its original form, this requires the user to choose the values of several parameters heuristically to achie...

متن کامل

Supervised Hybrid SOM-NG Algorithm

The hybrid SOM-NG algorithm was formulated to improve the quantization precision in Self Organizing Maps by the means of combine both SOM and Neural Gas properties using a parameter γ to tune the topology preservation. A supervised learning algorithm is proposed to take advantage of the balanced hybrid algorithm. The proposed algorithm makes a linear approximation of the goal function for every...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003